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Abstract: The Jerusalem artichoke (Helianthus tuberosus) is a high-yield crop, and a great source of
fermentable sugars, which gives the plant the potential to be used as raw material for economical
fuel alcohol production. In this article, the authors focus on the technological aspect of the biofuel
manufacturing process and its properties. First, the fuel alcohol manufacturing process is described,
afterwards assessing its characteristics such as kinematic viscosity, density and octane number. The
amount of fuel alcohol obtained from 10 kg of biomass equals to 0.85 L. Afterwards, the mixtures of
gasoline and obtained fuel alcohol are prepared and studied. Optimal alcohol and gasoline mixtures
are determined to obtain biofuels with octane ratings of 92, 95 and 98. The kinematic viscosity
of obtained mixtures does not differ significantly from its values for pure gasoline. The obtained
biofuel mixture with 25% alcohol content yielded a decrease of sulfur content by 38%, an increase of
vaporized fuel amount by 17.5% at 70 °C and by 10.5% at a temperature of 100 °C, which improves
engine startup time and ensures its stable operation in comparison to pure gasoline. The alcohol
obtained can be successfully used as a high-octane additive for gasolines.
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1. Introduction

Due to the growing requirements for the quality and environmental friendliness of
engine fuels and fossil energy reserves, the issue of their full or partial replacement with
alternative and renewable energy sources is widely discussed in the literature. Ensuring the
quality of fuel also impacts the longevity of consumer vehicles” engines [1]. Alcohols and
their compounds are one of the alternatives for fuel used in internal combustion engines [2].
The largest cost in manufacturing biofuels is the cost of the biomass source, so its proper
selection is crucial. Scientists in [3—7] have studied the cultivation and possibilities of yield
increase of the Jerusalem artichoke.

It is possible to find varieties of Helianthus tuberosus that allow to obtain higher yields
of tuber and aboveground mass, as well as increase the biomass’ energetic properties [3].
In [4], researchers pointed out important directions for related research:

Optimization of cultivation conditions to increase crop yields per input,

Increasing the inulin content in tubers by genetic modification of the species,
Identification and development of enzymes with high activity and stability to increase
manufacturing efficiency.

The biofuel ethanol might be manufactured out of many cellulose- or sugar-yielding
crops, such as sugarcane, corn, switchgrass, potatoes, etc. [8]. Residues from non-forage
crops might also be used as a source material for biofuel alcohol production [9]. The
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plant, native to the North America region, can provide high biomass yield and can be
cultivated in many regions, f. ex., China [10] or diverse and marginal agricultural areas
in Europe [11], thus signifying the plant’s potential as a sustainable and cheap source of
renewable biomass.

In [5], the authors suggest that large-scale research to improve the fermentation process
using various approaches (such as optimization of fermentation parameters and advanced
bioreactor designs) should be conducted. Gunnarsson et al. [6] assessed the potential of
Jerusalem artichoke as a feedstock for bioethanol, protein and inulin production. They
studied the biomass efficiency and chemical composition of 11 different samples collected
three times during the fall and early winter of 2011, showing that harvest time is an
important factor affecting biomass productivity and composition, but no studies were
conducted on the quality and volume of alcohol yield. Research by Kowalczyk-Jusko
et al. [7] highlighted that aboveground parts of Jerusalem artichoke obtained after drying
are characterized by unique energy parameters in comparison to other sources of biomass.
The beforementioned authors also found the drawbacks of Helianthus tuberosus as an energy
source, specifically the chemical composition of its ash and its low melting point. These
features indicate the risk of carbon deposits forming on heat exchangers, which can reduce
the efficiency of boilers.

The importance of renewable energy sources in the energy balance of Europe has
been studied by scientists in [3,12,13]. In [3], researchers estimated the calorific and energy
values of Jerusalem artichoke biomass and assessed its potential for bioethanol and biogas
production, but the manufacturing process and the quality of the ethanol produced were
not studied. In [12,13], authors present different methods of producing biodiesel from JA
tubers—by cultivating microalgae. The researchers studied the oil manufacturing process
from microalgae but did not investigate bioethanol production. The issue of using dry
plant biomass as a source for the production of biofuels and biochemicals in the process
of hydrocarbon replacement is discussed in [14—40]. It has been established that biomass
pretreatment promotes enzymatic hydrolysis and increases glucose yield from cellulose by
removing hemicellulose or lignin [14,15]. However, the main disadvantage of lignocellulose
biorefining is its high cost. Thus far, various methods of biomass pretreatment have been
developed; for example, using alkali, dilute acid, hot water, steam or ionic liquids [16].
Among these methods, alkaline pretreatment is the most effective for removing lignin
and improving cellulose content [17-19], which increases alcohol yield from the resultant
preproduct. Pretreatment with sodium hydroxide can remove 10.9 g of lignin from rice
straw, preserving 91.54% of cellulose and preserving the hemicellulose, but the high cost
and difficulty of the process, as well as the pollution caused by wastewater discharge,
hinders its industrial application [20,21].

Results presented in [22,23] describe the possibility of reutilization of black lye so-
lution at least five times for straw pretreatment and lignin extraction using acid precip-
itation [24,25]. The main purpose of acid pretreatment is to dissolve the hemicellulosic
fraction of biomass and make cellulose more accessible to enzymes [26], which demon-
strates the excellent degradation capability of lignocellulosic-derived inhibitors [27]. Some
studies focused on combined acid /alkali pretreatment processes with 82% cellulose, less
than 1% hemicellulose and 30% lignin being obtained from hollow palm fruit fibers [28].
Combined pretreatment of JA stems with HNO3; and NaOH allows for reaching glucose
conversion at 90.6% of the maximum theoretical value [29]; however, the high waste gener-
ation of such a process resulted in research on the possibility of reusing the pretreatment
solution [23,30,31].

The main advantages of JA are, among others, its ability to grow in poor soil, resistance
to pests and common plant diseases and growing much better (in comparison to other
energy crops) under salt stress and low temperatures [32,33]. JA tubers are an excellent
source of biomass for biofuels and biochemicals manufacturing and have been investigated
for ethanol fermentation [34—41], but the use of JA stems as a lignocellulosic feedstock for
biofuels and biochemicals is still poorly understood [42]. Further, scientists refer to JA as
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refer to JA as an energy crop that is profitable to burn, easy and cheap to cultivate [43-45].
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pilot column filled with Raschig rings, with the column’s diameter D = 150 mm (Figure 2).
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Figure 2. Diagram of the distillation unit. 1—flask heater; 2—the flask; 3—Raschig rings; 4—electric
spiral; 5—column; 6—thermometer; 7—deflagrator; 8—tap; 9—condenser; 10—collection vessel; 11,
mguhabzrmmgmﬂt@frax@Mwm unit. 1—flask heater; 2—the flask; 3—Raschig rings; 4 —electric
spiral; 5—column; 6—thermometer; 7—deflagrator; 8—tap; 9—condenser; 10— collection vessel;
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of the setup were then carefully sealed with an adhesive.

The cylinder used for measuring the fuel, without drying, was placed under the lower
bent end of the cooling tube in a way that the tube entered the cylinder by at least 25 mm
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and did not touch the walls of the cylinder. During distillation, the cylinder was covered
with cotton wool to prevent vapor loss. After preparing the apparatus for distillation, the
barometric pressure was recorded. If it was different than 101,325 Pa, correction values
were applied to thermometer readings using reference data from [46].

The production of biofuels from solid waste with preliminary hydrolysis is mainly
conducted with solid waste as an input material [47-52]. Given that the hydrolysis takes
place at elevated temperatures (ex. 180, 220 and 260 °C [52]), acid evaporation into the
environment occurs. Thus, the hydrolysis method requires pretreatment of raw materials
with hydrochloric acid or alkali, which is harmful to the environment, and therefore was
not used in our research methods.

Then, the gas burner was turned on and the heating of the flask was adjusted so that
the first drop of fuel during distillation fell from the end of the cooling tube no earlier than
5 min and no later than 15 min from the start of heating. The temperature at which the
first drop of condensate fell was recorded as the initial boiling temperature. After the first
drop of fuel fell into the receiving cylinder, the heating was increased, and distillation was
carried out at a uniform rate of 20-25 drops per 10 s, which corresponds to 4-5 mL/s.

The kinematic viscosity was measured with a maximum error of £3% by a capillary
viscometer VPZh-2 (LLC EximLab®, Kyiv, Ukraine) with a thermostat model SZhML-
19/2.5-11 (LLC Altavyr, Kyiv, Ukraine).

The density of alcohol and fuel mixtures was determined by an areometer ANT-2
(LLC Petroline, Kyiv, Ukraine) with a maximum error of £1%.

For further testing the alcohol’s properties as an additive to commercial gasoline, mix-
tures of A80-Euro-4 (DSTU 7687:2015) gasoline with the alcohol were prepared. Mixing of
fuel alcohol with gasoline was carried out in a closed vessel with an electric stirrer—stirring
mixtures for 5 min at a temperature of 20 °C. In total, 5 different mixtures were prepared,
with vol. alcohol contents of 5, 10, 15, 20 and 25%, respectively. Prepared samples ap-
peared as the alcohol completely dissolved in gasoline. They were afterwards kept in
hermetically sealed glass vessels for 60 days at a temperature of 21 °C. No stratification or
inhomogeneities were observed in the mixtures throughout their entire volume.

The sample liquids were afterwards characterized by octane number, content of water-
soluble acids and alkalis and density at 20 °C. The mixtures’ octane numbers were measured
using the same method as previously used for pure alcohol.

The values of the parameters of all sample compositions were measured three times,
and further construction of graphical dependencies and approximation curves was carried
out using the average values of the measurements.

The analyzed fuel mixtures’ density was examined at an ambient temperature equal
to 23 °C, so the measured density value had to be corrected to its value at a temperature of
20 °C:

o = pf + -t —20), M)

where p' is the density value measured at a set temperature (in this case 23 °C) in % and vy

. . o kg . .
is the mean density change per 1 °C, in - in accordance with [46].

The sulfur content in the fuel was determined using an X-ray fluorescent energy
dispersive sulfur analyzer Petra 4294 (XOS, East Greenbush, NY, USA) in accordance with
ASTM D4294 standard [53], with measurement accuracy of £3%.

3. Results and Discussion

The main physical and chemical parameters of fuels for gasoline internal combustion
engines include octane number, density, kinematic viscosity, etc. Gasolines produced by
catalytic cracking have octane ratings between 80 and 93, according to the motor method
(motor octane rating—MOR), and to increase them, expensive high-octane components are
used, the content of which can be up to 40%. To increase the octane number, improving
vaporization point and performance, it is possible to use the obtained JA alcohol as an
additive to commercial gasoline.
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number obtained by the research method and V¢ is the volumetrit confent of alcohol in the
mixture, in %.

Based on the octane number values, authors established the optimal compositions of
fuel mixtures to be alternatives for commercially available gasoline grades:

e  The mixture of gasoline MON = 80 and 10% alcohol additive to obtain A92 grade,
e  The mixture of gasoline MON = 80 and 15% alcohol additive to obtain A95 grade,
e  The mixture of gasoline MON = 80 and 25% alcohol additive to obtain A98 grade.

The calorific value of fuel is one of its main characteristics, as the energy released
provides the driving force for an internal combustion engine. The change in the calorific
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The determined vaporization temperature of the fuel with 25% vol. alcohol additive
is shown in Figure 8. For commercially available gasoline, the volume fraction of evapo-
ration at 70, 100 and 150 °C and the volume of residue in the flask is standardized. The
ease of starting the engine is characterized by the volume fraction of evaporation at a
temperature of 70 °C As can be seen in the flgure, the mentloned volume at thls tem—
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tion volume at a temperature of 100 °C. With the addition of fuel alcohol, the distillation
volume at 100 °C increased by 10.5%, which can ensure stable engine operation at low
crankshaft speeds and good meshing. The temperature of 150 °C and the final boiling
point of gasoline characterize the composition of the working mixture in the cylinder at the
end of the compression stroke, the completeness of fuel combustion, the ease of transition
from light to full loads and vice versa, engine operation, fuel and engine o0il consumption
and the composition of exhaust gases. According to the research results, this indicator is
practically the same as its value for gasoline, which means that the reliability of engine
operation will not decrease.

Important results were obtained in the study [55], where a mixture of gasoline and
waste from the alcohol industry—fusel oil—is proposed as fuel. In this research, it was
found that the concentration and depth of penetration of heavy metals into the soil decrease
with an increase in the content of fusel oil in the fuel. Therefore, important aspects of
our further research are the environmental indicators of the obtained alcohol fuel and the
utilization of waste materials from manufacturing process.

In studies [56,57], authors proposed to produce pyrolysis fuel gas from solid waste.
It was established that during the pyrolysis of aquatic plants and algae, the mixture of
obtained gases had the highest values of lower heating value: 17.10-17.15 MJ/kg for
microcystis and 16.45-16.00 MJ / kg for elodea. The gas obtained from pine wood pyrolysis



Energies 2024, 17, 2378

10 of 13

had the highest values of lower heating value in the range of 13.8 to 13.85 MJ/kg. The
lower heating value of pyrogas obtained from samples of reeds ranged from 12.6 MJ /kg to
12.65 M] /kg. Therefore, a promising direction of research is the use of Jerusalem artichoke
biomass waste in pyrolysis plants for biogas production.

Biomass conversion technologies are developed nowadays, due to their potential
in reducing carbon emissions as well as the dependence on oil, thanks to the renewable
character of the raw source material [58]. The European biofuel market is especially
potent in terms of development due to its current low input into the world’s biofuel
production—notably holding only 6% of the world’s market share currently [59].

To ensure effective use of alcohol fuel in the future, it is necessary to ensure qual-
ity fuel mixture formation and ignition in the cylinders of internal combustion engines
(ICEs). Further research should be conducted on engines with a turbocharging system to
ensure good fuel-air mixture formation and ignition. Additionally, further research should
focus on identifying the impact of alcohol fuel on the ecological parameters of internal
combustion engine (ICE) operation within hybrid powertrains with parallel and series
operating schemes.

4. Conclusions

The research conducted provides a basis for further research into JA tubers as a
biomass source for bioethanol manufacturing, as well as obtaining ethanol-gasoline blends
from the manufactured alcohol, corresponding to standardized A92, A95 and A98 fuels.
The alcohol yield of 0.85 L from 10 kg of JA tubers is considered satisfactory, given the low
cultivation requirements of the plant.

The calorific value of the obtained blend (25% ethanol, 75% MON 80 gasoline) was
decreased by 16% in comparison to A98 pure gasoline, which might affect energy efficiency,
but said downside is offset by the biofuel’s cleaner combustion, better source material
sustainability and lower costs of obtaining high octane fuel.

A significant reduction of sulfur content, namely by 38% in the 25% ethanol blend
(E25), can help to reduce the corrosive properties of biofuel and potentially increase the
lifespan of engine components, in effect decreasing maintenance costs.

Improved vaporization of the E25 fuel mixture (by 17.5% at 70 °C and by 10.5%
at 100 °C) can help reduce engine startup strain as well as ensure stable operation in
stop-and-go in urban traffic conditions.

In the future, additional follow-up research can be conducted to determine how the
obtained biofuel performs in different types of gasoline engines, analyzing performance
and exhaust gasses’ contents in comparison to pure gasoline. Research might also be
conducted on the scalability of bioalcohol production from JA.
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